At first glance, Bearskin Lake does not strike one as unique. It is rather round in shape, and, at 163 hectares, is much larger than our average study lake. But we cover many lakes rounder than Bearskin and several — including Two Sisters, Clear, and Minocqua — that are much larger. Likewise, Bearskin falls into the middle of the pack in terms of average and maximum depth. True, the lake bottom fairly seethes with rusty crayfish, but that nasty invasive species is also abundant in Oneida, Crescent, and Lower Kaubashine. What sets Bearskin Lake apart is not its shape, size, or biology, but the sort of loons that visit and live on it. 

I was reminded of the unusual status of Bearskin among loon lakes two days ago when I made our first visit of the year there. I was not greeted by the adorable sight of a loon parent capturing tiny minnows and gently leaning downwards to present them gingerly to its 3-day-old chick, as one might see on Silver, Hodstradt, or Bear. Nor did I encounter a male and female that had tried and failed to hatch chicks and were looking forward to next year, when they could renew their breeding efforts. Instead, I observed a nervous loon that immediately raised its head high upon surfacing to scan for a territorial pair that might take exception to its visit. (Linda’s picture above shows the alert posture characteristic of anxious loons.) This bird, “green over silver, white-blue over orange”, was a former breeding female on Seventeen Lake in Hazelhurst that we had seen only once since 2012. We have no idea what this loon has been doing since we last saw it, but its presence on Bearskin and without a mate suggests that it has been marking time and has not reacquired a breeding position. 

Three hundred meters southwest of the displaced Seventeen female was another forager that was far more relaxed on the lake. Like the first loon, though, she was alone. To my surprise, this bird — “silver only, white over yellow” — was the former breeding female from West Horsehead Lake. One of the most prolific breeders ever in our study area, this female has reared 19 chicks since her initial capture in 1996 and, at 29+ years, is our second oldest bird. Her residence on Bearskin solved the puzzle of her disappearance from West Horsehead, which Al Schwoegler (a West Horsehead resident) and I had been mourning all spring long. “Silver only, white over yellow” had finally met a young opponent this spring willing to fight harder than her for the territory. She had thus accepted defeat, left West Horsehead, and taken refuge on the lake where evicted adults have always gone — Bearskin Lake. 

I continued my paddle south from the boat landing, feeling that my effort to visit Bearskin had already been repaid. A lone loon foraging just west off the huge island diverted me briefly; I was deflated to find this bird unbanded. As I veered southeast, following the arc of the island, I scanned eastwards and spotted an apparent pair synch diving (i.e. diving and surfacing together repeatedly). These two loons seemed to know me and were no trouble to identify. “Red-stripe over copper, silver over orange” was a vaguely familiar band combination, but I knew his mate, “red-stripe over silver, red over white”, very well indeed. Initially banded on 2001, this female has raised 10 young on Little Bearskin Lake and on Currie, where she had settled in 2015 after her eviction from Little Bearskin. The male with her, I now realized, was her new mate from Currie. 

As pleased as I was to encounter the tame pair from Currie, their presence on Bearskin was very bad news. They had hatched two chicks on about June 25th, and had lost one of those by the time Lyn observed them on July 2nd. Since parents attend and protect young chicks assiduously and since we have never observed both pair members to leave chicks unattended until they reach four weeks, the Currie pair’s presence on Bearskin signaled that they had lost the second chick not long after the first and were done breeding for the year. “What are you guys doing here?” I said with a mixture of sadness and disapproval. Bearskin is not a lake where loons go to celebrate their achievements. 

My visit to Bearskin ended with an oddity. As I was lamenting the Currie pair’s disappointment, they wheeled around and began tooting to signal the arrival of a flying intruder. The intruder obliged me by arcing towards the Currie pair and skittering to a landing only 50 meters west. The morning sunlight allowed me to read most of its “red-stripe over blue, white over silver” band combination before it hit the water. This male, I knew, was the current breeder from Little Bearskin. His arrival here was more bad news, because males rarely leave their territories during a breeding attempt. “Red-stripe over blue” circled tensely with the pair and then became aggressive, sending both Currie birds fleeing in different directions as he stalked them underwater. Maybe he was stung by his own breeding disappointment. A later check of the database showed that he and his mate had been sitting for at least 32 days on four eggs on Little Bearskin without a hatch. We can reasonably surmise that the pair abandoned a first clutch of two eggs in early or mid May, reused that nest by laying two more eggs with the abandoned ones still present, and now have failed in a second attempt — either because of black flies again or perhaps infertility of the eggs. So this has been a year of frustration on Little Bearskin, as well. 

I found two more unmarked loons along the west shore of Bearskin on my visit and no hint of a resident pair or breeding activity. In fact, most pairings on Bearskin are fleeting, and nests are scarce. The last successful breeding on Bearskin occurred in 1997, when a pair fledged two healthy, crayfish-loving chicks, repeating their feat from the year before. Since then there has been a smattering of breeding attempts, but none — to our knowledge — has produced a hatch. Moreover, no pair has ever formed a breeding partnership that lasted more than three years on Bearskin. Loons seem to sense something about the lake that humans do not. Bearskin is not a lake where you go to raise a family; it is a lake where you go when you have nowhere else to go. 

Most scientific research comprises snapshots of a biological system. That is, we usually study the behavior or ecology of an animal for a year or two in a forest, on a coral reef, or in a desert. On the basis of such a short term study, we pontificate about what constitutes a good territory and what constitutes a bad territory for the animal we are studying. Then, feeling that we have described the system accurately, we fold our tents and move on to the next study and habitat.

But time changes things. My team and I got a demonstration of the impact that time can have yesterday when we visited two lakes located towards the northern part of our study area. Life has always been hard for loons on Dorothy and Hodstradt lakes. They are both rather clear lakes and full of fish. But they have been disasters reproductively, because they lack the islands, marsh, and bog that loons seek out to keep their eggs safe from raccoons.

The gradual but now-dramatic rising of lake levels in the Northwoods has produced a spectacular reversal of fortune for loons on Dorothy and Hodstradt. What had been an unremarkable spit of land on Dorothy has become an island several meters offshore, reachable only by water (see photo below). What once was a long curving peninsula on Hodstradt has been transformed into an island, accessible only after a lengthy swim. In short, two lakes for which chick production was a freak occurrence have now become prime real estate, because they offer offshore nest sites inaccessible to all but the most ambitious raccoon.

Of course, the rising waters have not been kind to all lakes. Heiress Lake had a handy island that saw regular chick hatches in the late nineties and early 2000s. But no more. That raccoon-proof site is now four feet underwater, and Heiress no longer supports a breeding pair.

The take-home message is clear: territory quality is not fixed and unchanging. Instead, changing climatic patterns transform the landscape in surprising ways. A goldfinch’s lifespan is short enough that habitat transformations probably matter little. But loons live long enough to see poor nesting habitat become good nesting habitat and vice-versa; this species should be able to detect and respond adaptively to fluctuations in territory quality.

In fact, loons do exhibit some ability to respond to changing landscapes. We see this ability in the willingness of breeding pairs to explore vacant lakes near their original one and sometimes nest at sites different from those they have used to hatch chicks. And, of course, young nonbreeders use the presence of chicks on a territory as a measure of current reproductive quality so that they can target lakes for eviction attempts that will reward them with many offspring. On the other hand, many adults settle on a productive territory during the prime of their lives only to see its quality decline along with their own body condition. Lacking the fitness to defeat an opponent in a battle for a new territory, such birds are stuck breeding on a failing territory. These old codgers could tell ecologists a few things about territory quality and the passage of time. 

There was something distinctly wrong with the Buck male. He had never been tame. Indeed, he was one of those loons that made you work to see his leg bands on each hourlong visit. So, a few days ago, as I hefted my canoe down the steep paved road to the public beach that we use as our access to the lake, I knew I would face a challenge to get enough good looks at his legs to produce a convincing ID. But the male that foraged all around the lake with the usual female was well beyond a challenging ID. He was somewhere between highly vexing and impossible to identify. While the female gave me occasional good looks at her leg bands as I tracked her loosely during her foraging routine and seemed indifferent to my presence, her mate clearly avoided me and gave me no close looks at all. This was a reversal from two decades of past observations on the lake during which the female, not the male, had always been the tougher ID on Buck.

I paused at intervals to consider a change in tactics. But there is not much flexibility and creativity involved in IDing loons from colored leg bands. One simply approaches a breeding pair closely enough to see any bands on the loons’ legs but not so close as to upset the birds — and hopes for the best. This undertaking takes great patience and some luck, especially at times when black flies are out in numbers, as they are now, because loons shorten their above-surface time and seldom preen when hounded by flies. In an attempt to rally my spirits through distraction, I stopped tracking the pair after about an hour and circled the small island in the southeastern corner of the lake. Denying what was clearly a move borne of frustration, I told myself that taking my eye off of the foraging pair for a moment would allow me to search for a possible abandoned nest on the island. After all, I was weeks behind schedule in this first visit to Buck, and an experienced pair like the Buck pair should have long since started incubation.

No nest was evident on the island, but my effort to avoid for a moment the exasperating task of IDing the male ended up solving the puzzle of the male’s identity entirely. Draped over a fallen red pine on the south side of the island, I found the carcass of the Buck male that we had banded way back in 1999.

IMG_0157

It was sad to see silver over blue, red-stripe over red gone forever after watching him vigorously defend his territory for 21 consecutive years and never lose it — even for a day — in all that time. But it is the ultimate fate of every territory holder to meet a fitter, stronger, younger territorial opponent and bow to them. That is the essence of terminal investment in old male loons. The death of this oldest male in our study area (26+ years) now leaves the placid 24+ year-old Bear Lake male as the most senior representative of his sex. I am hoping the day on which the Bear male meets a determined, superior opponent in a territorial battle is still several years away.

I have been out on the lakes for the past fifteen days. This time of year, we race around to all of our study lakes from the previous year – and a few more where we suspect new pairs might have settled – and see who is on territory. We do not dawdle; our task is to identify the pair present on each territory and move on to the next. It is an exciting but frantic annual ritual. While we usually observe the breeding pair on each territory for an hour, a minute will suffice during scouting, because we are merely confirming the identity of breeders, then moving to the next lake. Therefore, on a really good day – if the loons are easy to find and show us their bands – a scout might hit ten lakes.

I had the kind of scouting visit we dream of on Lake Seventeen on Sunday. Seventeen has beautiful clear water, but it is large (175 acres) and has multiple bays and convolutions. One can be certain that a visit there will require putting in the canoe and searching for twenty minutes or more for the birds. Three days ago I stopped by a home at the northern tip that is our access point, glanced at the lake as I habitually do, and was delighted to see the pair foraging thirty meters offshore. I grabbed my binoculars and ran to the water’s edge. Five minutes later I confirmed that the male was “Yellow/Silver, Green/Copper” and the female “Silver/Red, Pink/Red”. The loons were so close to my position that I even observed several small bluegill scatter and flee to within inches of shore as the female pursued them. For a moment I wondered what life must be like for a small fish that ventures occasionally into open water, where predators lurk. But my reflection was cut short; I had six more lakes to hit that day.

Few scouting visits go as my recent one to Seventeen did. Yesterday, in fact, I had one of those days when I think that loons might have gone extinct suddenly. The pair on Tomahawk-Little Carr territory was cooperative: I got their bands quickly and saw them building a nest in their usual spot. But that was the end of my good fortune. I was skunked on Bullhead Lake, where the pair was missing (for the third visit this spring), and the usual nesting location showed no signs of usage. Minocqua-North, an area where the Bullhead pair has foraged in previous years, was also vacant, though I found two patches with marshy hummocks that would make excellent nesting spots. In short, the banded male and female of Bullhead, consistent breeders and chick-producers since 2010, are at large. The same is true for Minocqua-South, where a banded pair first nested on an island in 2018. Johnson Lake, where the banded male was caught on a fishing line­­­­ last May, was empty as well. My next lake, Mercer, is one we dread, because both pair members are extremely skittish. A typical datasheet from Mercer following an hour-long visit might list the leg band colors of the male and female, respectively, as “Red or Orange?,light band?” and “banded?”. It is that bad. After an hour and 53 minutes of exhaustive searching yesterday, though, I would have been thrilled just to see a loon. As on the three previous lakes, I did not find the pair.

2019-05-12 06.14.19

Yesterday’s hours of fruitless scouting ended the first round lake visits with a whimper. All other days have gone far better, however. Linda’s great work at the southern boundary and my observations in the central and northern parts of the study area have clarified the picture of who is back and who is not. Though I was stung by the disappearance of many banded and well-established pairs — or possibly my failure to find them – I also can look back and smile at the return of the venerable female from Upper Kaubashine. Banded first with her chicks in Vilas County in 1993, she has been a most successful and itinerant breeder, having produced chicks with at least four different mates on four territories. She is at least 31 years old and probably older. So let’s lift a glass to this resilient bird (on left in photo with her larger mate). With luck, she will dodge the blackflies, raccoons, eagles, and fishing lures, and add two more offspring to her lifelong tally.

 

Few loons have endured the frustrations that the current Mildred female (“Taupe Stripe”) has. Initially captured and banded on Soo Lake in 2004, she reared two healthy chicks with her mate in that year. But each year since has yielded no offspring for this bird, despite consistent effort.

Taupe Stripe’s struggles started when she was evicted from Soo by a stronger female in 2006. Thus began an itinerant lifestyle: temporary settlement as a loner on Goodyear Lake and frequent intrusion into other lakes in the area, probing for an opening. In 2010, she finally secured and defended a breeding position on Maud Lake. Like other small, shallow lakes, though, Maud suffers from a limited prey base. Efforts by the loon pair there in the three years before her arrival were excruciating — hatched eggs followed by starvation of chicks in the 2nd week of life, the first week, and then the fourth week. Taupe Stripe and her two mates fared no better, failing to produce young in 2010, 2011, 2012, and 2013. She fell off our radar in late 2013 and 2014, but resurfaced in 2015 and 2016 — again, as a floater.

When day to day survival is a challenge, as it is for loons, you focus on the present. Taupe Stripe ultimately settled on Mildred Lake in early 2017. Unlike Maud, Mildred is a large, clear lake with a strong record of fledging chicks that hatch. Although she and her unbanded mate lost a small chick on Mildred last year, they have turned things around. Last week we caught Taupe Stripe, her mate (now banded), and their strapping six-week-old chick. Things were still looking good for the family upon my visit there today. And thirteen years of pointless wandering, frustration, and disappointment are forgotten.

I have always loved working in the field. While others remain indoors, chained to their desks and computers, much of my work requires paddling canoes on beautiful lakes to record behavior of loons. It is a dream job. Recent findings, though, are forcing us back into the laboratory.

Why must we return to the lab? Most of you know already from recent posts that male loons senesce dramatically in their mid teens and that they also become aggressive at that age. But the fact that males decline, whereas females do not, raises vexing questions about underlying physiological causes of male decline. Does male health hit the skids because of the cumulative impact of blood parasites? Does the greater body size of males make it more difficult for them to maintain good health throughout their lives? Is male decline linked in some fashion to conditions faced during the chick phase? As always happens in science, one finding, even a very clear one, raises a legion of related questions.

Fortunately, we can answer many such questions by taking small blood samples from our loons at the time of capture. Jeremy Spool, a soon-to-be-Ph.D. from University of Wisconsin-Madison, supervised the taking of these samples, which can tell us about hormone levels, parasites, and genetic patterns. Jeremy also completed a preliminary wave of analyses and has made an interesting discovery with regards to telomeres.

First some background. Telomeres are “end caps” on chromosomes — composed of many repeated DNA sequences — that protect chromosomes when they are replicated during cell division. In both humans and loons, the sequence of repeated DNA building blocks (nucleotides) that comprise telomeres is the same: TTAGGG. Telomeres grow shorter with age and with illness in humans and many other animals. Human babies have chromosomes capped with about 2,500 repeats of TTAGGG; older humans have only about 800 such repeats. A number of researchers have found that shortening of telomeres is related to stressful conditions faced by non-human animals. For example, one study reported that cormorants and albatrosses hatched late in the breeding season showed greater shortening of telomeres — possibly indicating more rapid aging — than did individuals born early in the breeding season. A good deal of work remains to be done on telomeres to determine if they can predict patterns of aging and body condition, but there are some promising signs that they can do so.

Screen Shot 2018-04-27 at 5.11.45 PM

Jeremy analyzed telomere length in loon blood samples from 2017 to see if: 1) telomere length was correlated with age, and 2) males and females differed in telomere length. He noted a weak tendency for male telomeres to shorten with age. We will have to add more data to see if the pattern holds up. On the other hand, Jeremy also found that females had telomeres significantly longer than those of males (see figure, above). Since we know that female loons live longer than males and do not experience a sudden decline in condition in their mid teens, this pattern is as we might have predicted.

What does the telomere pattern tell us? While it is vaguely comforting to find a physiological correlate to confirm the difference in aging pattern between male and female loons, telomere shortening is still a mystery in animals generally — and most certainly in loons. We can draw no immediate link between short telomeres and any other aspect of physiology, like parasite load, immunological capacity, or even age. But the male/female difference gives us hope that telomeres might predict body condition, disease resistance, and/or life expectancy, within each sex. If so, then measuring of males’ telomeres might permit us to predict if and when they are near death and should begin behaving aggressively — to allow themselves one last desperate reproductive gasp. Moreover, if young loons, like cormorants, pay a price by losing some of their telomeres from the stress of being hatched late in a breeding season, then differences in hatching date might help us solve the enduring mystery of why some male loons cannot survive past their mid teens, while others thrive well into their 20s.

I have just completed my paper on black flies. The paper presents evidence that black flies cause nest abandonment, which was lacking in the literature before. The evidence is pretty convincing, I believe. (We shall see what my scientific colleagues think when I submit the work for publication in the next week.)

In the course of looking at black fly impacts on nesting, I stumbled into two  interesting findings. These findings were serendipitous, like much of what scientists report. That is, I was keenly focused on one topic — black flies and nest abandonment — when I made a finding related to another topic — other causes of abandonment. In fact, I analyzed statistically a whole set of factors, some seemingly unrelated to black flies, that might have predicted nest abandonment. Among these were age of the male, age of the female, duration of the pair bond between them, exposure to wind (which might have kept the flies at bay), size of breeding lake, and distance from the nest to the nearest flowing water (from which black flies emerge as adults).

I was excited, but also baffled, to discover two new predictors of nest abandonment. First, pairs on large lakes are less prone to nest abandonment than pairs on small lakes. Second, pairs containing an old female are far more likely to abandon a nest owing to black flies than are pairs containing young females.

Now, I like to think that I know everything about loons. When I am visiting a study lake and someone asks an easy one like, “Do loons mate for life?”, I puff myself up, lower my voice an octave, affect a mild British accent, and pontificate on the serially monogamous breeding system of Gavia immer. But I was wholly wrong-footed by these two new findings. I had been so laser-focused on black flies as the prime movers in nest abandonment that I had included age and lake size in the analysis almost as an afterthought. I had not even considered what it would mean to learn that age and lake size were significant predictors.

The statistical significance of lake size as a predictor of abandonment forced me to confront a complex variable. If numbers of black flies are correlated with nest abandonment (as they are), then it requires no great conceptual leap to infer that black fly harassment is causing loons to abandon their nests. But the fact that lake size predicts abandonment opens up a much broader range of explanations, because lake size is correlated with degree of human recreation, pH, wind exposure, wave action, available food, and numerous other factors. Having picked through the possibilities, an energetic explanation seems most likely to explain the lake size pattern. That is, large lakes provide more food than small lakes, so loon pairs on large lakes should be in better health and condition than those on small lakes. Well-fed, healthy adults with strong immune systems should be better able to cope with the blood loss and exposure to blood-borne pathogens (like Leucocytozoon protozoans, which cause a malaria-like disease in birds) than under-nourished individuals with weaker immune systems.

What about the higher abandonment rate of pairs that contain an old female? Here again, energetics might be the key. Old females senesce — they experience much lower survival and slightly higher vulnerability to eviction than young females. So it stands to reason that old females are in poorer body condition and are more likely to abandon nests when attacked viciously by black flies. Reproductive decline among old females is widespread in animals, and the tendency of old female loons to abandon nests more readily seems consistent with that pattern.

But what about males? As I have emphasized in recent blog posts, males senesce even more dramatically than females do. How is it possible that old males can continue to incubate eggs when being bitten mercilessly by black flies when old females cannot? Terminal investment appears to be the answer. Terminal investment — efforts to increase breeding output as death approaches — occurs only among male loons, even though both sexes senesce. As the months have passed, we have learned that male loons not only become hyper-aggressive when they reach old age (15 years) in an apparent attempt to hold their territory for another year or two of breeding, they also seem to show a more subtle willingness to try harder to hatch eggs and rear young to fledging. The new finding showing that old males do not abandon nests as readily as old females when beset by black flies is thus part of a growing pattern.

My tentative explanations for the impacts of lake size and sex on nest abandonment are not the end of the story, of course. Rather, they raise more vexing questions. Why on earth would a loon settle to breed on a small lake, when small lakes doom loons to poorer body condition, a higher rate of abandonment, and the likelihood of losing one or both chicks in the event they can hatch the eggs? And even if the higher rate abandonment of nests by old females fits a growing pattern, why do males and females differ so much in their life-history strategy? We do not know….and this is why I love my work!

I have often sung the praises of female loons. Females, you will recall, have much greater staying power than males do. Adults of both sexes face the constant threat of eviction, by younger, fitter individuals. Males fight desperately for their territory, retaining it at great cost and sometimes dying in its defense. Females, on the other hand, seem to keep defeat in perspective, retreating to a nearby lake after losing their territory and then going about the arduous process of reestablishing themselves on a new territory.

Even among females, the Upper Kaubashine female stands apart for her tenacity. One distinction is simply her age. Having been banded in the first year of my study, 1993, she is most likely at least 31 years old. She is, therefore, the oldest loon ever in our study area. What seems even more remarkable about the Upper Kaubashine female is her breeding success, which spans a quarter century, five different territories scattered across Oneida and Vilas Counties, and at least six mates. No other loon, male or female, can match the breadth of her breeding record.

The Upper Kaubashine female epitomizes the relentless efforts of female loons to reproduce. However, her story is not one of unbridled success, like that of the Townline male (pictured during capture from a few nights ago). The Townline male has been a success through holding his territory for 24-plus years and cranking out chicks there. The Upper Kaubashine female has achieved genetic immortality by a nomadic path — tirelessly relocating and re-pairing following repeated losses of territory and mate. After all, to achieve the lofty distinction of having bred on five different territories requires the ignominious distinction of having been evicted from four.

What is it about this female that set her on this reproductive odyssey? We do not have a complete answer, but size likely plays a role. Throughout her life she has weighed in at about 200 grams lighter than average, which puts her in the lowest quartile of female size. Most of the female intruders that have visited her various territories to challenge the Upper Kaubashine female for ownership have outweighed her. It stands to reason that she has lost more than her share of battles. Only her uncanny ability to establish herself as a breeder on one high-quality territory after another has allowed her to overcome her physical limitations and become a productive breeder.

We always celebrate when someone identifies a new banded adult. “You got an exclusive!”, I say to one of my students, if they nail all bands on a loon that we banded as a juvenile in the study area and have not seen since. In fact, Melanie reported an exclusive ABJ (for Adult Banded as Juvenile) just yesterday; this one happened to be a four-year-old male hatched on Samway Lake that she ID’d on Elna. (Linda’s photo shows an exclusive that she nailed bands on, this one from Soo Lake.)

Sightings of young ABJs are valuable. These loons are all “floaters” — nonbreeding individuals that live on small lakes or parts of large lakes that are not used by breeding pairs — so they live a marginal existence. Still, they provide us with data on juvenile rates of survival and return to the study area, which contribute to mathematical models that tell us whether our population is stable, increasing, or decreasing. Young ABJs are also the future, because these green, reticent individuals — they are notably subordinate when interacting with territorial residents, have low fighting ability, and are well below optimum adult body weight — will ultimately replace our established and well-loved territorial breeders.

I spend most of my research time asking behavioral questions about our long-term territorial residents, which is regrettable, because it leaves young ABJs out. In fact, a vexing question concerning young ABJs has been lurking in the back of my brain for some years now: where do they all go? From the countless small celebrations the students and I have had over the years at new ABJ sightings, an expectation has formed that we would see a vast wave of new territory settlements by this youthful cohort. But it has not happened. Each year only a handful of young ABJs claim new territories by evicting a living territorial resident, replacing a resident that has died, or carving out a new territory where there was not one previously.

This morning I got fed up with waiting around for all of the young ABJs to settle — and looked at the numbers. They are pretty shocking. We have been able to celebrate sightings of 348 young ABJ floaters over the years. That is a lot of loons. Of these, though, only 124 settled on breeding territories and paired with a mate for at least 60 days. And an even smaller number — 94 — nested and hatched chicks. Since most of these individuals were last seen years ago, most died long ago. So only slightly over one-fourth of all young ABJs that returned the breeding grounds ever produced young. Even this rather low fraction is too high, because it presumes that we actually ID all young ABJs that come back to the study area. Clearly a typical young ABJ deals with many challenges — lengthy migrations between breeding and wintering grounds, bouncing around in the study area, probing here and there for territory openings, absorbing attacks and chases at the hands of territory owners — only to fall short in that last, most crucial test: territory settlement.

Why? Why would the rate of failure to settle be 75%, when vacant lakes with a successful record of chick production abound in the study area? If I were a loon (I know….but don’t say it!), I would look around for a prime breeding territory, pick a few fights to try and get one, and then settle for a less-than-perfect but adequate territory, if it came to that. Because failure to settle leads to evolutionary oblivion. That is, we expect that natural selection has acted on behavior in such a way as to maximize breeding success, and breeding success would appear to be maximized not by failing to settle but by settling wherever you can and cranking out as many chicks as possible there.

Of course, it is hubris to think that humans know how loons should behave. Loons have been molded by natural selection and other evolutionary processes for countless generations in a way that virtually guarantees that their behavior leads to high evolutionary fitness. However, as my students in Animal Behavior class know well, there are a few caveats to the expectation of sensible, adaptive behavior by animals. The main one is that rapid environmental change can sometimes outpace the capacity of animals to adapt, causing animals to behave in a way that does not maximize their reproductive success. In other words, if the environment that an animal faces — its predators, competitors, physical environment, etc. — changes so rapidly that the species cannot evolve suitable behavioral adaptations, then we might see animals behaving “foolishly”. So we might surmise that ABJs fail to settle on vacant territories because the availability of vacant territories has only recently increased, and loon settlement behavior evolved during a period when vacant territories were scarce. In effect, then, ABJs would be practicing behavior not suited to the territorial situation that now exists.

While we cannot reject the hypothesis that rapid environmental change has made loons look stupid, it is a bit hard to stomach. The hypothesis posits that young floaters are poor settlers because they are not used to territories being readily available. But whether territories are scarce or abundant, young floaters should have evolved to be able to occupy any available one readily. That is, the capacity to snap up a vacant territory is so fundamental that it is a trait that should be possessed by all young loons, regardless of the territorial environment in which they evolved. There must be a better explanation for the failure of so many young ABJs to settle on territories.

The reason for lackadaisical territory settlement by floaters is probably habitat preference. Some of you may recall that young loons show a peculiar but very strong preference for natal-like habitat. Specifically, young floaters from small, acidic lakes strongly prefer to breed on small, acidic lakes, and those from large lakes of neutral pH try to establish themselves as breeders on large, neutral-pH lakes. Strong habitat preference creates a situation where a young floater reared on one kind of lake does not see vacant territories on another kind of lake as a viable breeding option. If young ABJs are being finicky about the territories they choose to settle on, we should expect to see some “perfectly good” territories go unsettled, as we do. More to the point, we should not be surprised that many floaters fail to settle.

Natal habitat preference might help us understand the seemingly inefficient territory settlement of young floaters, but, if so, it merely shines a spotlight on another vexing question: why do loons strongly prefer to breed on lakes that resemble their natal one? I have speculated about this before, but no satisfactory answer has yet emerged. As we collect more and more survival data, we might find that loons have evolved to take into consideration more than just the potential of a breeding lake to produce chicks. Indeed, settling on a territory like your natal one might mean that you were prepared since day one for that kind of environment and might be able to survive well there. If so, natal habitat preference might allow you to offset with longevity any loss you suffer from settling on a territory that is less-than-stellar for producing chicks. The slow but steady approach of rearing a chick here and a chick there but surviving to a ripe old age might be the one that maximizes lifetime breeding success.