I have touched upon this theme before. A peril of longitudinal investigation is that one decides, after a period of time, that one understands the system. So it has been with the Loon Project.

For many years I have thought I had a good handle on territorial behavior. Indeed many aspects of the loon territorial system have become clear during the course of my work and are not in doubt. Both sexes usually fight to claim their territories and face the constant threat of eviction. Males, which establish strong ties to a territory through controlling nest placement and learning where the best nest sites are, fight harder than females, and sometimes die during territorial battles. Early senescence among males sets the stage for them to become very territorial and aggressive as they reach their declining years (their mid-teens in many cases), which seems a means to help them eke out another year or two on a familiar territory.

But I was way off in my understanding of the role of lake size and body size in territorial behavior. I have always thought of breeding territories on large lakes as much sought-after, because large lakes have ample food for rearing chicks. (Small lakes, you might recall, run low on food for chicks, resulting in lower fledging success.) If large lakes produce more young, I reasoned, large-lake territories must be highly desirable. Competition must be fierce, then, for these territories. A recent analysis of territorial tenure — how long a male or female can hold onto their territory before getting evicted from it — has forced me to rethink the effect of lake size on territorial competition. The figure below is a plot of territorial tenure versus body mass for males on lakes smaller than 20 hectares (50 acres) in size (like Langley, whose current pair is pictured). As you can see, small males — especially those below 4600 grams — have very short stays on small lakes, in most cases, while large males — notably those heavier than 5000 grams — often enjoy very long territorial tenure. This pattern suggests that, contrary to my expectation, territorial competition is fiercer on small lakes than large.

impact of lk size, male body size, on terr tenure

Let’s look at the same pattern on medium-sized lakes (20 to 80 hectares; or 50 to about 200 acres). You can see that the overall pattern is still evident, although it is weaker here, because a number of very large males (5400 to 5800 grams) have anomalously short tenure.

i2 mpact of lk size, male body size, on terr tenure

Finally, let’s inspect the data only for males on lakes larger than 80 hectares (200 acres). In contrast to my earlier hypothesis, large males are not holding their territories any longer on large lakes than are small males, as you can see from the plot below. Males of all sizes may enjoy long tenure on large lakes.

3impact of lk size, male body size, on terr tenure

How on Earth do small males hold their territories much longer on large lakes — which  seem much in demand, get more intrusions, and appear difficult to defend — than on small lakes, which get fewer intrusions and should be more easily held? I don’t know exactly how males hide in plain sight on large lakes, but it might have to do with the difficulty that territorial intruders have in simply finding a nesting pair and identifying nesting habitat on large lakes. Consider the Lake Tomahawk-Little Carr pair. This pair nests in a marsh at a well-hidden location. When one bird is incubating, its mate is usually far off in the wide open portion of Lake Tomahawk, which is many kilometers long and has an area of 1400 hectares (about 3500 acres). A male intruder might well find and socialize with the off-nest pair member on on the big water, but it would have no way of knowing that the mate of this loner was on a nest hidden far away in a marsh. Similarly, when the eggs hatch, the pair quickly leads the chicks to the main bay of the lake, far from the critical nesting area. Pairs with chicks provide an enticing cue to young males seeking territories, because the presence of chicks tells of the availability of nesting habitat. But a male intruder that encounters the Tomahawk-Little Carr pair and their chicks on the main bay of the lake would face the needle in the haystack problem in locating the precious nesting area that yielded the chicks. A dangerous battle might win the territory, but the knowledge of how to use the territory (that is, where to place the nest) would vanish with the old male’s departure. Hence, large lakes appear to be less valuable to males.

A male intruder bent on taking a territory likely to yield chicks in the future would be better-served by evicting a chick-rearing male on a small lake. Such an intruder would have a much smaller set of nesting areas to inspect and would likely find and use the nesting area that produced the chicks. Thus, we might expect stronger competition among males for small, easy-to-learn territories — a pattern that dovetails with the longer tenure that large, competitive males enjoy on small lakes, compared with small, easily-evicted males.

What about females, you might ask? Do large females on small lakes, like large males, have an advantage in holding their territories when compared with large females on large lakes? If my hypothesis is correct, and the value of a territory depends upon knowledge of safe nesting areas, then large female size should not be especially beneficial on small lakes. Indeed, any impact of female body mass on territorial tenure should be equal across all lake sizes. Why? Because females do not control nest placement in this species. An intruding female that evicts a breeding female with chicks and pairs with the breeding male would have access to that male’s knowledge of nesting sites on a lake of any size. As predicted, large size is no more beneficial to small-lake females than large-lake females. (Indeed, size has an overall weaker effect on competitive ability in females.)

So my post hoc hypothesis for the fierce territorial competition on small lakes holds for the time being. My explanation is not the only one consistent with these data, by the way, and there remain many further tests to run. For example, we might expect competition not to depend strictly upon lake size per se, but upon the obviousness of nesting habitat. In other words, an intruding male should fight hard for a large-lake territory if the territory contains islands or other obvious safe nesting habitat, but not if there is no clear nesting habitat in the vicinity of a pair with chicks. We might even expect that breeding pairs on large lakes would purposely move their chicks as far as possible from their nesting areas, in order to avoid betraying their whereabouts and getting evicted. Clearly a refined, more robust test of the hypothesis is in my future.

Finally, a plea. I am about two-thirds done with a new long-term NSF proposal, which might fund my work for 5-10 more years. Even if I get the proposal funded, though, the funds will not be available for 6-8 months. So we are facing a 2019 season with very minimal funding — fumes from the end of my current NSF grant. To have a chance for future funding, we must continue to cover the study population. Please let me know if anyone can help us out this year with 3 weeks of lodging (or some portion of that) early in the season (late April-early May) and/or 3 weeks (or part of that) in July-August, when we must capture and mark pairs with chicks. We might be able to pay a very modest rent, if my remaining funds are not gobbled up by travel. I am embarrassed to ask this, but I am desperate. I just do not know where we could possibly afford to stay this year. Thanks for any help!



In my last post, I told only half of the story of the explosion of the Cunard family — the cheerful half. If you read that post, you know that, following the eviction of the Cunard male and abuse or neglect of the chicks by the evicter, one chick made a daring 1/4-mile trek across land to Hasbrook Lake and is now happily ensconced in that loon family.

The other Cunard chick was not so fortunate. In fact, following interviews of campers and the camp steward, we now know that a day or so before the eviction that led to the desperate dash of one chick to Hasbrook, its sibling had swallowed the live bait and hook used by a camper. As he described it to me, the fisherman panicked and did what most do when they have hooked a loon: he cut the line. I discovered the aftermath of this hooking. The thoroughly consumed remains pictured above suggest that the injured chick became weak, took refuge on shore (as seriously injured loons do), and was attacked and killed by an opportunistic mammal or scavenged after death. Its four leg bands confirmed its identity; the threaded line and fishing snap I found confirmed the cause of death. So the eviction that occurred on July 30th and 31st was actually the second unfortunate turn for the Cunard pair during the last three days of July.

We have discovered several such hookings during our study, despite the fact that anglers do not trumpet them. Perhaps we should take a moment to describe what to do when a loon takes your hook. The best outcome is removal of the hook by the fisherman. Removal of the hook gives the loon a good chance to survive the encounter. Cutting the line, on the other hand, frees the angler but leaves the hooked loon with a death sentence. A hooked loon (or other animal) on the end of a cut fishing line has to contend with a hook or lure that it probably cannot dislodge on its own. Its feeding impaired or prevented altogether, a hooked bird will probably succumb to starvation or predation resulting from its weakened condition. The second best outcome is to cut the line and immediately inform a local wildlife official of what has happened so that he or she can get help for the bird. In many cases, a hooked bird can be captured and de-hooked by me or someone else trained to do so. In other words, if you cut, don’t cut and run. Those of us who study and love loons will do our best to save one that is in trouble.

The Cunard chick’s death is a case in point. Had we known about the hooking, we would have had little difficulty re-capturing the chick and likely removing the hook as well. In that case, Hasbrook Lake might have ended up with four chicks rather than settling for three!

To those of us accustomed to looking at loons during the summer, the sight of an adult caring for three chicks — as in Laura Unfried’s photos from two days ago — is peculiar. Loons, of course, almost always lay only two eggs. If they are lucky, two chicks hatch. It is by no means certain that those two chicks will survive to fledging age. In fact, 47 of 61 breeding pairs we study have one chick, not two. So the spectacle of two adults caring assiduously for three young was startling.

Close inspection of Laura’s photo from Hasbrook Lake reveals another peculiarity: the central chick is much larger — perhaps 10 days older — than the other two chicks. (Note that the left-hand chick is entirely downy with a small bill, whereas the center one has the anterior part of its head coming into adult feather and has a bill nearly as thick as the parent’s.) The obvious size disparity told Eileen Lonsdorf, who reported the third chick three days ago, that her nicely balanced family of two parents and two chicks had been joined by an interloper.

How could a huge, healthy chick somehow get separated from its biological parents and join another family? Territorial behavior among loons guarantees that each breeding pair will nest and rear its young far from other pairs. The likelihood of a chick straying from its own family to join another — fortuitously or by design —


seems remote.

One lesson that you learn if you do something for a long time is that rare events do occur. Chicks do very occasionally leave their parents and territory to join other families. We have noted two causes for such chick dispersal. First, starving chicks, especially beta chicks on small food-limited lakes that are being physically beaten by their alpha siblings, sometimes attempt to escape the abuse and find an alternate loon family nearby that will feed and protect them. Second, chicks that lose one or both parents to territorial eviction are forced to flee their natal territory and seek parental care elsewhere, if the adult that evicted a parent physically attacks them.

Solitary journeys by displaced chicks seeking new homes are desperate enterprises. One reason for this is that many lakes with loon chicks simply have no neighboring pairs with their own chicks that might be joined. Even if a displaced chick is fortunate enough to find a nearby pair with chicks, they are likely to be much older or younger than itself. If so, it is unlikely to be accepted by the new family. I vividly recall a case in 1999, when an abused beta chick undertook an astounding 1/2-mile trip across woods and roads from Benedict to Bug Lake in Vilas County, only to land with a foster sibling three times its size that beat it mercilessly until it perished.

Since the monster chick that joined the Hasbrook pair is a robust, well-fed individual, we could rule out that it fled to Hasbrook because of sibling abuse or lack of food. So we were left to conclude tentatively that a nearby territorial eviction forced this young loon to relocate. We pulled out a map to assess the possibilities.

Screen Shot 2018-08-03 at 6.04.18 PM

Immediately, we pinpointed Cunard Lake, which is separated from Hasbrook by a quarter mile of woods and bog, as the likely source of the wandering chick. Cunard, a regular study lake of ours, had two large, healthy, 5-week-old chicks at our last visit on July 25th. Yesterday, however, I found the lake empty of loons, except a single floater adult. The steward of the campground reported that loons had been chasing each other repeatedly across the water on July 30th and 31st, which indicated a protracted territorial battle. The absence of the territorial pair suggested strongly that the breeding male had lost the battle to a usurper and either died or been forced to abandon his territory and chicks. This tragic event, in turn, would have scattered the rest of the family and subjected the chicks to attacks by the new male owner.

Last night we captured the peculiar but close-knit family of two adults and three chicks on Hasbrook. It will require genetic analysis to be certain that the huge new chick on Hasbrook is a refugee from Cunard and the offspring of the displaced Cunard pair, as we surmise. But we have strong reason to believe that he is a most fortunate survivor of a desperate overland journey.

It is July and time to hide the chicks! That’s right; while human parents show off their progeny — perhaps partly to solicit help in caring for them — loons do the opposite. You see, intruders looking to evict territorial residents scour lakes for chicks, because the presence of chicks indicates that the lake contains good nesting habitat and abundant food. So by producing young, a breeding pair has put a giant target on their backs, providing an incentive for any intruder that discovers the chicks (like one of the six intruders shown in Linda’s photo) to return the following year and make an eviction attempt. We should expect, therefore, that parents would hide their chicks from intruders whenever possible.

Of course, breeding pairs are fighting a losing battle. On the one hand, they must feed and protect their chicks, which includes vocalizing often to warn their mate and chicks of passing eagles and other dangers. On the other hand, when intruders fly over or land, parents need to ignore the chicks altogether. Toggling between these two behavioral modes is no small task. Furthermore, while it is desirable to protect your long-term ownership of the territory by hiding your chicks from intruders, you do not want to lose them in the process!

Although chick-hiding is a tricky business, loon families do have a strategy for coping with the sudden appearance of intruders overhead, which fly over at a speed of about 70 miles per hour. We call it “dive and scatter”. At the appearance of a flying intruder in the distance, a loon pair and their chicks quickly slip under water. The chicks swim toward shore and, once there, are hidden by their brown plumage, which makes them resemble rocks or logs. Meanwhile parents swim under water to the middle of the lake, which draws the intruders to them and not the chicks. The aim of this coordinated behavior pattern by chicks and their parents seems clear: keep intruders from seeing the chicks. On its face, dive and scatter behavior clearly seems a means of helping parents’ maintain possession of their territory.

I need to pause here for a second to consider an alternative explanation for dive and scatter. In fact, the most obvious reason why a pair and chicks would dive and scatter is to protect the chicks themselves. Intruders do kill chicks commonly, so this is a viable hypothesis at first blush. But chicks are most vulnerable to being killed by intruders in their first two weeks, so dive and scatter as chick defense — if it is a viable explanation — should occur mainly among small chicks. Yet dive and scatter occurs rarely in small chicks and very commonly in those four weeks and older. So the hypothesis that dive and scatter is a behavior to protect small chicks from intruder attacks can be easily rejected by its timing.

We have known about dive and scatter behavior for some years, but yesterday on Woodcock Lake I learned that loon parents know when to call off the ruse. While feeding their single chick along the lake shore, the Woodcock pair spotted two intruders in flight. The family dove and scattered, the chick hiding near shore and parents making for the lake’s center, in stereotyped fashion. Following the script, the two intruders landed by the parents (and far from the chick), the four adults circling and diving together for several minutes. The charade abruptly fell apart when an eagle flew over the part of the lake where the chick was hiding. Both parents immediately ceased interacting with the intruders, wheeled towards the eagle, and wailed desperately for several minutes, while swimming in that direction. In a half-second, the breeding pair had morphed from cool, detached individuals with nothing to hide into into frantic worry-warts!

Some might view such a loss of composure by a breeding pair to be quite costly. If intruders are able to learn about the presence of chicks by detecting chick defense behavior such as that shown by the Woodcock pair, then the pair exposed themselves to the threat of future eviction by wailing to defend their chick in the presence of two intruders. A clear blunder….until you consider that the alternative was to lose the priceless product of their summer’s breeding efforts.


I have often sung the praises of female loons. Females, you will recall, have much greater staying power than males do. Adults of both sexes face the constant threat of eviction, by younger, fitter individuals. Males fight desperately for their territory, retaining it at great cost and sometimes dying in its defense. Females, on the other hand, seem to keep defeat in perspective, retreating to a nearby lake after losing their territory and then going about the arduous process of reestablishing themselves on a new territory.

Even among females, the Upper Kaubashine female stands apart for her tenacity. One distinction is simply her age. Having been banded in the first year of my study, 1993, she is most likely at least 31 years old. She is, therefore, the oldest loon ever in our study area. What seems even more remarkable about the Upper Kaubashine female is her breeding success, which spans a quarter century, five different territories scattered across Oneida and Vilas Counties, and at least six mates. No other loon, male or female, can match the breadth of her breeding record.

The Upper Kaubashine female epitomizes the relentless efforts of female loons to reproduce. However, her story is not one of unbridled success, like that of the Townline male (pictured during capture from a few nights ago). The Townline male has been a success through holding his territory for 24-plus years and cranking out chicks there. The Upper Kaubashine female has achieved genetic immortality by a nomadic path — tirelessly relocating and re-pairing following repeated losses of territory and mate. After all, to achieve the lofty distinction of having bred on five different territories requires the ignominious distinction of having been evicted from four.

What is it about this female that set her on this reproductive odyssey? We do not have a complete answer, but size likely plays a role. Throughout her life she has weighed in at about 200 grams lighter than average, which puts her in the lowest quartile of female size. Most of the female intruders that have visited her various territories to challenge the Upper Kaubashine female for ownership have outweighed her. It stands to reason that she has lost more than her share of battles. Only her uncanny ability to establish herself as a breeder on one high-quality territory after another has allowed her to overcome her physical limitations and become a productive breeder.

If you have been following the goings-on at East and West Horsehead lakes, you know that the picture was bleak a few weeks ago. After Iceberg, the female on East Horsehead, was hooked on a fishing line on Memorial Day weekend, she ceased interacting with her mate, YellowBlue, and seemed headed for a rapid, unpleasant demise. Reacting to the loss of a viable mate, YellowBlue searched nearby territories for a new mate, and he gained one after evicting CopperGreen, the male on neighboring West Horsehead Lake. Meanwhile, CopperGreen, after losing his territory, appeared a shadow of his former self, and was reduced to skulking about on the fringe of his former territory to avoid raising the ire of YellowBlue. His mate, WhiteYellow, was left with eggs to incubate and no mate able to help her do so. Thus, the hooking not only threatened the life of an adult loon, it also also compromised the breeding effort of the neighboring pair.

What a difference a few days makes! After a final skirmish with YellowBlue at dusk on the 6th of June, CopperGreen flew off his territory for good to lick his wounds, giving up the fight for ownership of West Horsehead. Fortunately for him, many lakes in the north support no territorial loon pair and yet are full of fish. These lakes are natural soft landing spots for loons displaced from their breeding lakes. One such lake is Birch, where we spotted CopperGreen five days later. But he did not give up his territorial aspirations and settle for a life of ease. In fact, Al Schwoegler reports that CopperGreen has just settled with afflicted female Iceberg on East Horsehead, “across the street” from his former territory. While still bothered by the small jig embedded in her throat (!), Iceberg’s behavior is otherwise normal, and she now interacts extensively with her new mate. So it is possible that CopperGreen has bounced back from his eviction to claim a good territory with a recovering mate.

Meanwhile, back on West Horsehead, things got complicated for WhiteYellow, CopperGreen’s former mate. Having enjoyed an uninterrupted 23-year run as female owner of the West Horsehead territory, during which she produced a whopping 19 fledged chicks, WhiteYellow is a spectacularly productive individual. We cannot impugn her breeding prowess. But in the aftermath of her mate’s eviction, she elected to continue incubating the eggs they had produced. You cannot blame her for trying to hatch these eggs; according to our records, they were within a few days of hatching when her mate met his match. Her decision, however, was fateful. In effect, WhiteYellow was gambling that: 1) she could hatch the chicks as sole incubator and despite spotty incubation owing to black fly infestation, and 2) her new mate would accept and raise the chicks sired by his predecessor.

WhiteYellow has faced such difficult decisions before. Twelve years ago her mate was booted off of the territory late in incubation, yet the evicting male helped her complete incubation of the eggs and rear the chicks. Four years ago, WhiteYellow again completed incubation during a period of male territorial rancor, only to see an evicting male kill the newly-hatched chick. So she knows the ups and downs of continued breeding during territorial instability.

This time, I think, WhiteYellow has erred. Though she continues to incubate sporadically, the eggs are a now a full week overdue for hatching. And WhiteYellow’s hopeful incubation has prevented her from getting on with her life  — bonding reproductively with the evicting male, YellowBlue, so that the two of them might produce a new clutch of eggs and rear some late-hatching chicks.

Apart from the West Horsehead/East Horsehead saga, the news from our study area is mixed. Seventeen of 120 pairs survived the black fly onslaught and have hatched chicks from their first nesting attempt. Another 54 pairs are incubating eggs — nearly all from renesting attempts after abandoned first attempts. A few more pairs will yet try to nest. There is a chance that the newly-formed West and East Horsehead pairs could be among this last group. For the time being, though, they are just hoping for a return to normalcy.

I am still shaken by the recent spate of fishing entanglements. Perhaps my sadness and vexation over these troubling events prevented me from looking clearly ahead. I thought: “Well, the hooked female at East Horsehead will die slowly from the ingested lure, and that will be miserable, but another female will settle on the lake and replace her.” I gained some measure of relief from anticipating the orderly progression of events that would unfold on the lake. As expected, the afflicted female, “Iceberg”, has declined, although she is still not yet weak enough to catch. Her mate, “YellowBlue”, has not stuck to the script, however. Far from waiting passively for another female to settle with him, YellowBlue is proactively seeking a new territory. And that is the problem.

It should have been obvious to me when Nelson reported, last Wednesday, that he saw YellowBlue intrude onto nearby Alva Lake. Females leave their breeding lakes occasionally to intrude onto the neighboring territory; males do so rarely in the height of the breeding season. So YellowBlue’s intrusion was a sign that something was afoot. But I dismissed his visit as an anomaly — the distracted antics of a male whose mate was unwilling to initiate a nest. As it turned out, YellowBlue was probing neighboring lakes for a weak spot, a territory whose owner he could defeat in battle and whose territory he could seize. Based on the aggression and chasing that occurred when YellowBlue visited Alva, the Alva male was not on board with this plan.

But YellowBlue’s search continued. In the next few days, he found a vulnerable male on a different neighboring territory: West Horsehead. We were not present to observe the entire sequence of events, but Al Schwoegler reported yesterday that CopperGreen, the West Horsehead male, was skulking about and hunkering down at the northern end of the lake, far from the nest that he had built with his mate (a 28+ year-old female, “WhiteYellow”, who is among our oldest birds). A quick look at the middle of the lake explained CopperGreen’s diffidence. YellowBlue was foraging and resting there, acting like he owned the place. (Melanie confirmed that this state of affairs continued today.) Now loon behavior in many ways is unsubtle, and territorial behavior is a good example. When a loon is in the middle of a lake, acting like he owns it, he owns it! So YellowBlue had clearly battled CopperGreen, defeated him, and forced him to lay low along the lake’s periphery to escape further attacks. We have seen this sequence of events scores of times. If events proceed normally, WhiteYellow will ultimately cease her efforts to incubate the eggs alone, and the nest will be abandoned. Perhaps WhiteYellow and YellowBlue will renest again this year, but that is doubtful. (CopperGreen, if he is healthy enough, will fly to a nearby undefended lake, like Bearskin, where he can lick his wounds.)

What is troubling about this latest turn of events is the central role played by humans. That is, an angler — a careless or perhaps just an unlucky one — hooked Iceberg on East Horsehead and fled the scene. Iceberg immediately ceased breeding behavior and began a struggle to survive. This turnabout forced her mate, YellowBlue, to go with Plan B, leaving his lake to find another nearby with a healthy female on it. In leaving his own territory and evicting a male on West Horsehead that was sitting on eggs, YellowBlue likely doomed both East and West Horsehead to breeding failure in 2017. So a single fishing casualty affecting a single adult loon has precipitated the loss of breeding opportunities on two of our most productive lakes.

While we are concerned for the impacted loons, this latest eviction has some scientific value. YellowBlue is quite a phenomenon — the youngest male ever observed to evict an established male from his territory. Hatched on Little Bearskin Lake, YellowBlue is only four years old. Perhaps it was his good fortune that CopperGreen was himself only six years old (a product of Oneida Lake). So the YellowBlue-CopperGreen contest featured the youngest combatants ever. I hope that the novelty of this latest encounter takes away a bit of the sting from the event that set it in motion.

All is not lost among loons this year. In fact, one advantage I have, as someone who tracks breeding behavior on 120 lakes, is the capacity to shift my attention away from those where things have gone south to lakes that where all loons are healthy and productive. So let me end with a beautiful photo of Linda’s from Muskellunge Lake that will remind us that there are lakes where loons are free of hooks, where they defend their territories successfully, and where the next generation thrives.

LMG5508 Clune Yodeling Tight with Family2-2


I do not know why I am still surprised by it. Again and again we see territorial females vanish, only to reappear as intruders in their former territory or another in the same neighborhood. The theme has been consistent throughout my quarter-century-long research project on loons. In fact, it is about a 50-50 proposition that a female who disappears from her territory will be resighted nearby in the next year or two.

I suppose the reason why I am always wrong-footed by female reappearances is that I am calibrated to human social conditions. Unlike loons, humans are highly social and benefit from a vast network of family ties and friendships. Humans have evolved to cultivate those bonds — leaning upon family and friends when necessary; providing support, in turn, when called upon to do so. Humans, therefore, rarely vanish without a trace from an area where they have lived for many years. We typically maintain most or all of our social connections even when we shift from one location to another.

Loons, in contrast, are quite alone. To be sure, an adult male or female has the companionship of its mate for several months each year. But this companionship is ephemeral and conditional. When a loon’s mate is evicted by an intruder, the loon faces a stark choice: remain with its mate of many years but move to a new territory, or stay on its territory and accept the evicting intruder as its new mate. Adult loons always spurn their long-term partner and make the coolly pragmatic choice.

Knowing loons as I now do, I should not have been surprised when Linda sent me this crisp photo of an intruder departing from Muskellunge Lake. Although the bird is missing a colored leg band from its right leg, it was not difficult to determine that this intruder is the former female from Manson Lake, who has not been seen since fall 2015. Since loons almost never desert a territory, we can surmise that “Silver over Red, Mint Burgundy over White” (as we affectionately call her) was evicted by the 9-year-old female from Rock Lake in Vilas County who was first seen on Manson in April 2016 and still owns that territory. The eviction forced “Silver over Red” into an itinerant existence. Though you might think that a veteran of 12 years of breeding and mother of 11 fledged chicks had earned better treatment, this 20+ year old now spends her time drifting from one inhabited lake to another as an intruder, searching for a new mate and territory so that she can resume breeding.

It is tempting to pity Silver over Red. These past two years have been difficult and dangerous for her, no doubt. But rather than viewing her and others like her as individuals whose best years are behind them, I always feel an intense admiration for displaced female loons. While many of us humans respond to setbacks with a shrug of acceptance, female loons never stop hunting for a new opportunity.

Science is a cumulative pursuit. That is, the thirst for knowledge is never fully quenched. Rather, we answer one question, only to reveal another puzzle or two more. And thus begins another search for answers. That is certainly how my 24-year-old loon project has gone. But sometimes we reach a point where a vexing question is finally laid to rest, and it feels as though we have made real progress. I am at such a point now.

Let me back up. If you have been following this blog, you know that senescence in old loons is a phenomenon we have recently discovered. Senescence, loss of body condition and decline in survival rate in aging individuals within a species, is all too familiar to me and other humans. During the past twenty years, many studies have reported senescence in birds, mammals, fish, and reptiles. So what? Well, we expect that animals that lose condition as they grow old will change their behavior in response. In other words, scientists have long predicted that senescing individuals should start to behave so as to leave more to their offspring and care less for themselves. To put it another way, old individuals should be willing to take a hit to their survival if it allows them to pour more resources into their young and help their young survive. This makes sense, of course, because old individuals reach a point where they stand little chance of surviving longer, so they would do well to give whatever they can to their offspring, which DO have a bright future. Animals that behave this way should leave more and healthier offspring, and thus this behavior should spread in populations. This very logical idea is termed “terminal investment”. Again we can all probably think of human parallels.

Terminal investment, which I have mentioned before, has become a central theme of the loon project, ever since we published a paper 9 years ago on fatal fighting of males. Terminal investment became interesting to us because it was the most plausible explanation for such lethal contests. Our reasoning was as follows. If males are willing to die to defend their territories, then they must reach an age at which they have little to lose. And if males have little to lose, this must mean that senescence hits males (but not females, which seldom battle to the death) very hard to the point where old males have little future to look forward to. In this case, it might make sense for them to fight like crazy to hold a territory for another year or two, rather than give it up easily and leave themselves nowhere to breed during their last year or two of life. So we have two clear predictions here: 1) males, but not females, must start to die off at a certain age, and 2) males beyond this age must still fight like hell for their territories. It is this clash of body condition and behavior among old males that might cause fatal fighting.

At the time we started to consider the terminal investment hypothesis as a means to explain reckless battling by males, we had almost no solid information on the ages of males in our population. With patience and tireless field work by dozens of us, we have now turned things around. Analysis of loons of varying age has shown us that many males hit the wall at age 15. First, and most important, they start to die at a high rate. You can see from the figure below that males (blue bars) are suffering higher mortality than females (red bars), whether they are on territory (Terr) or without one (floaters: “Float”).


But males also lose mass at age 15, indicating loss in body condition, as shown here:


Finally (and predictably), males get evicted from their territories at a high rate at age 15:


Wow, males are really getting slammed after they pass the age of 15 years!

So all of these data tell us that the first prediction of the terminal investment hypothesis, abrupt senescence at a certain age in males but not females, is clearly met in loons. That age, surprisingly, is only fifteen. Females clearly remain strong, healthy, and vigorous well past age fifteen.

As hard as the first prediction of terminal investment was to test, the second prediction is even harder. You see, fights are common in loons if you take the perspective of a loon’s lifetime, but they are quite uncommon if viewed from the standpoint of human observers in canoes. In other words, most individual loons have engaged in several major battles during their long lives, but territorial battles are not common during day to day observations and often occur so quickly that we are not present to witness them.

Patience pays, however. Since we can draw upon 24 years’ worth of field observations, we now have a trove of observations that we can search for any evidence of aggression and territorial behavior. I made this search, looking for two kinds of evidence: 1) territorial yodels, which serve to communicate a male’s aggressive tendencies and willingness to battle, and 2) out and out aggression, in the form of battling, lunging, chasing and underwater attacks launched by territorial loons on intruders to their territories. I was simply asking “Do old male loons (above age 15) tend to maintain a high level of yodeling and aggressiveness towards intruders?”.  The answer is a resounding “Yes”:


As you can see from the figure above, old males actually increase their tendency to yodel (yodels per intruder), compared to young males. Similarly, old males step up their aggression (see below) and contrast in this way with females, who show no increase:


By the way, all of these patterns I have shown are “statistically significant” via tests that I have performed.

You cannot be as excited as I am about this set of results. No one is. But, as I mentioned, this is one of those rare cases where we have finally managed to answer a burning question to our satisfaction. Even better, the question is one that had been the foundation of my research funding from the National Science Foundation. So I can now report to them that I have found the holy grail! What makes this clear finding even more significant is that terminal investment is quite rare in vertebrates. Of the hundreds of species studied thus far, the only other one to show such a clear pattern of terminal investment is the California Gull. Appropriate, don’t you think?

(Photo by Woody Hagge.)