Each spring I feel my adrenaline level rise as we carry out the annual census of returning loons. This practice seems mundane, at first glance. During the census, we simply visit all loon territories and identify each territorial loon we find from its colored leg bands. But since I have gotten to know many of my study animals quite well, I wait with bated breath to learn whether Clune (the famously tame male on Linda Grenzer’s lake, whom I have known since he was a chick) comes back. I feel almost as strongly about Clune’s son, who settled 6 km away, on tiny Virgin Lake. I even have a soft spot for the comically skittish female on Silverbass Lake. She routinely appears down at one end of this long skinny lake, seems to wait for us to paddle in her direction from the other end, and then races by us underwater and reappears at the end of the lake we just vacated. She is so notoriously hard to approach that her very skittishness has become a useful identifying trait. In Minnesota, I was anxious to see whether the young male of unknown identity on Lower Whitefish — who nested rather recklessly on a water-logged artificial nesting platform exposed to the powerful west wind and waves — would return from the winter and try that move again or learn from his mistake and seek a more protected location. (I am happy to report that all four of these loons are back this year.)
Apart from the relief or dejection we feel when we spot our familiar study animals — or don’t — loons’ tendency to return provides critical scientific information. A tally of the proportion of all adult breeders that returned from the wintering grounds in the spring tells us about survival between late summer of the previous year and early spring of the current one. Of course, territorial eviction muddies the water. That is, a loon can either fail to return to its previous territory because it is dead or because a competitor has driven it off of its territory and forced it to move elsewhere. So we must be cautious in interpreting return rates. Still, they provide us with a crude metric of survival.
Let’s look at return rates throughout the study. What is clear from a quick inspection of the graph below is that loons in the Wisconsin Study Area have fluctuated in their tendency to return, coming back at a rate of over 90% in great years and just above 70% in dismal ones. (Minnesota study loons returning in 2022 also fell within this window, as the graph shows.)

Perhaps the most striking pattern is the lack of concordance between return rates of each sex. In other words, knowing that it is a bad year for male survival tells us nothing about female survival. True, there are some years in which male and female survival seem to go hand in hand — look at 2005-2009, for example. But male and female rates seem to run in opposite directions between 2010 and 2017. Overall, there is no statistical tendency for male survival to be correlated with female survival.
We can draw an important — though tentative — conclusion from the fact that male and female survival do not vary in concert. Major loon mortality events outside of the breeding season do not seem to drive annual loon survival strongly. If major die-offs during the non-breeding period (i.e. winter and migration) were a major cause of loon mortality, then male and female numbers should be correlated, because the sexes use similar migratory routes and winter quarters and should suffer in parallel each year.
The most interesting and potentially worrisome pattern we could spot in the annual return rate data would be a decline in survival of either males or females. As you can see from the color-coded dotted lines, female return rate has actually shown a slight rise over the past 29 years. On the other hand, male return rate has declined slightly, though not significantly, during this period. Still, since we already know that males are struggling to maintain optimal body mass in the Upper Midwest, it is disconcerting to see male survival decrease in a way that seems consistent with the mass loss.
Of course, while making the rounds of territorial pairs, we also notice if a territory is vacant or occupied by a lone adult after having supported a breeding pair the previous year. And therein lies a bit more troubling news. Ten of 118 Wisconsin territories that were occupied in 2021 are now vacant or inhabited by loners. We have also recorded two new territories in lakes not used for breeding last year, so the net loss in territories is only eight. Still, this was not the picture we wished to see in a population that has been on a downturn. (Though we are only learning about the Minnesota Study Population, it appears that only one territory among seventy or so that we have visited so far fell into disuse this year after having been occupied last year.)
Let’s put aside worrisome population patterns and turn to news of the moment. It is early June in the North. This is a time of great hope for loons. A few breeding pairs in our Minnesota and Wisconsin study areas — like the Lower Hay pair in the photo — were fortunate enough to dodge both black flies and raccoons and are on the brink of hatching young. Many more have rebounded from early setbacks and renested. If we are lucky, we still have the potential for a good crop of chicks in both regions. Lacking any more effectual means of bringing this about, I will keep my fingers crossed.