Many of my colleagues fear ChatGPT. They fear that students will use this new online tool based on artificial intelligence to generate papers and answer questions on homework assignments that students are meant to tackle themselves. Their fear is legitimate. Why? Because if you read ChatGPT’s answers to a range of questions, you notice something rather quickly. ChatGPT generally produces plausible, thoughtful, coherent responses. Furthermore, ChatGPT writes well — at least compared to what I see from most of my undergraduate students. In short, ChatGPT creates headaches for instructors. It is forcing us to reconsider how we evaluate our students.

On the other hand, I was excited to learn what this new AI tool would produce when asked about loon biology. I asked ChatGPT: “Do loons mate for life?”. It responded:

While common loons often return to the same breeding territories and may reunite with the same mate from the previous year, these pair bonds are not necessarily permanent. After the breeding season, loons typically migrate to coastal or open water areas for the winter, and their social behavior can be more flexible during this time. When they return to their breeding territories in the following spring, they may or may not reunite with the same mate.

Now, this is not a terrible answer. ChatGPT is correct when it suggests that loons do not mate for life. But its mention of migration is off-topic. Its point regarding “social behavior” during winter is irrelevant. Its statement that loons “may or may not reunite with the same mate [in the spring]” is grossly misleading. And ChatGPT has entirely failed to mention the chief reason why loons do not mate for life: territorial eviction.

ChatGPT’s responses to loon-related questions are similar to its answers on other topics. The program searches the web for information from which to build its responses. But because these responses draw information from countless online sources, they include the good, the bad, and the ugly. In short, ChatGPT gives you a blur of “conventional wisdom” about any topic, not rigorous and precise scientific truth. Its answers are, for the most part, uncontroversial, vague, and riddled with caveats.

I turned my attention to loon conservation. When I asked, “Are any common loon populations in trouble?”, ChatGPT came back with:

As of my last knowledge update in September 2021, the status of loon populations, particularly the Common Loon (Gavia immer) in North America, varied by region and was a subject of concern in some areas. Common Loons were classified as a species of “Least Concern” by the International Union for Conservation of Nature (IUCN) due to their relatively stable population at the global level.

However, it’s important to note that local and regional populations can face significant challenges, including habitat loss, water pollution, lead poisoning from ingesting fishing tackle, disturbance from boating and recreational activities, and climate change impacts on their breeding and wintering grounds. These factors could affect specific loon populations and lead to localized declines.

ChatGPT is spot on in some respects. Loons are in no trouble globally. And the status of populations varies from one region to another. But the program uncritically lists many anthropogenic factors that might harm loon populations and provides no specific information. One might infer from ChatGPT’s statement that we must solve all of the problems listed in order to preserve loons. Or perhaps loon populations face many obstacles but none is severe enough to cause serious harm. In truth, we do not know which, if any, of the listed factors might endanger loons. Furthermore, ChatGPT has failed to mention two factors — exploding black fly populations and decreased water clarity — known to harm loon populations in the Upper Midwest. If this had been a class assignment, ChatGPT would have earned a “C-“.

ChatGPT’s take on factors threatening loons sounds eerily familiar to what we loon conservationists often say. (I include myself in this group.) That is, we often settle for a ChatGPT-caliber pronouncement about loon conservation. We say or imply that if we: 1) enact a lead ban, 2) reduce human settlement on northern lakes, 3) eliminate water pollution, 4) keep boaters away from adults and chicks, and 5) halt climate change, then we can save loons. These goals, of course, range from difficult to impossible to achieve.

A ChatGPT-like approach will not save loons. We simply cannot eliminate all threats. In fact, many factors that loon conservationists perceive as threats pose little or no hazard. The best example is human recreation. While lead sinkers are a danger to loon populations because of the many breeding adults they kill each year, loons are well-equipped to handle boaters. Loons tremolo, wail, or yodel when boats are too close to them or their chicks. They penguin dance, charge, and dive noisily at boats that creep close to their nests. Humans usually interpret these warnings correctly and back away in short order. Moreover, the low rates of mortality and nest abandonment attributable to boating activity indicate that loons tolerate human interactions well.**

How do we distinguish between relatively benign environmental factors, like boating, and those that truly endanger loon populations, like black flies, lead sinkers, and water clarity? Science. Only science will save loons. If the Minnesota loon population is declining and 50% of loon deaths result from lead poisoning, the folks in Saint Paul will take notice. If Wisconsin loons fledge 40% fewer offspring nowadays than in 1995 because of lower water clarity, that will make headlines in Milwaukee. And if the fledging rate across the Upper Midwest is 30% lower owing to black fly-induced nest abandonments, that might turn apathy concerning climate change into action.***

So if you are an unprincipled student being taught by an inattentive instructor, ChatGPT might earn you a “B” on your history paper. And if you cannot get the wording right in a letter to a client or colleague, ChatGPT might provide suggestions. But we loon conservationists should resist the uncritical, shotgun approach that ChatGPT takes to addressing questions. If we are going to preserve loon populations that we treasure, we must first collect data. And then, in our communications with the public, politicians, and the media, we must highlight the specific environmental hazards that science has shown to be dangerous to loons.


* The featured photo was taken a week ago by Linda Grenzer of an adult male from Lake Winter, Wisconsin that swallowed a lead sinker. Though the sinker was surgically removed by Raptor Education Group in Antigo, the male died two days later from the lead it had already absorbed.

** I might be biased by my work in Wisconsin and Minnesota in my conclusion about loons coping with boating activity. It is conceivable that boats do cause enough nesting failure and/or chick mortality in some regions to threaten loon populations. We do not have data to show such a pattern, however. If you know of such data, please let me know.

*** I made up these three numbers. We are still collecting data on loon mortality caused by lead sinkers. Only recently have we learned about the threats of black flies and loss of water clarity. We and our partners are recording many lead-poisoned loons these days. We will publish an estimate of lead’s impact within five years. Robust estimates of the impacts of black flies and water clarity on loon populations in Wisconsin (and possibly Minnesota) should be available by sometime in 2025.

I should have known all along. I should have known last May, when the ancient outboard motor we had just bought to cover the Whitefish Chain spewed a foul rainbow sheen onto the water’s surface and belched a caustic purple cloud that momentarily blinded us. I should have known as I filled huge tanks of gasoline at the Holiday convenience store in Crosslake, hefted them down to the dock, and hooked them up to the belching motor. I should have balked at the absurdity of using a filthy, fossil-fuel-guzzling outboard to study an animal that requires clean air and water.

Instead, I shrugged. “This is how people get around in the Northwoods”, I thought. “This is inevitable. This is the environmental cost of studying loons on big lakes.”

In my own defense, my understanding of proper boating practices became ingrained during my childhood. Back then, when we needed to provision our cottage on an island on 40-mile-long Lake Temagami in central Ontario, we took our little 2-stroke outboard over to the Ojibway Store on Devil’s Island. I still recall taking in the pleasing aroma of balsam fir mingled with mixed gasoline as we listened to the soft lapping of waves against the store’s dock. At the time, my major concern was whether Mom would treat us to Burnt Almond bars when she had finished ordering our groceries. Gasoline was just an innocuous part of the landscape we inhabited.

Indeed, to folks of my generation and generations adjacent, the angry whine of an outboard motor, the slap of a stiff wind in our faces, and the sight of parting, churning waters behind us seem inextricably linked to the pungent smell of gasoline.

But it need not be so. There is a growing market for electric outboards (and inboards) that can replace gasoline motors smoothly and are far cleaner (of course), quieter, and — according to what experts say — very reliable and low-maintenance. I have been researching this.

Why have I experienced this sudden desire to go electric on the water? Two reasons. First, the last two Wisconsin field teams and I faced an absolute nightmare every time we tried to start up our vintage 9-horsepower Evinrude. I did not collect data on our efforts, but I believe we averaged 43 almost-shoulder-dislocating tugs of the starter cord per lake to get that dirty old 2-stroke started. I have had it! (I believe Sarah ’22, Molly, Claudia, Chris, Tia, Bailee, and Sarah ’21 will applaud this move.)

Second, I can no longer deny the obvious. The relentless march of climate change has begun to hurt loons in the Upper Midwest. We can see it in the increase in the May black fly population, which forces loon pairs to suffer horribly as they to incubate their eggs, often to the point of abandonment. And it is even more evident in the sharp decline in July water clarity during the past quarter century (see below) — a decline that impairs loon parents’ ability to find food to feed their chicks. Both increased black flies and decreased water clarity, we now know, come about in large part because today’s warmer, rainier summers produce more flowing water that: 1) supports increased black fly reproduction and 2) washes more matter into lakes that reduces clarity.

So I have finally figured something out that I should have guessed before. Climate change is hurting loon populations in the Upper Midwest in multiple, measurable ways. Cutting back on fossil fuel usage where I can will help slow this damaging pattern. And that is a step in the right direction.

One often hears that clear water is a benefit to loons — if not an outright requirement. The entry for the “Common Loon Habitat” section in Birds of the World, for example, opens with “[Loons] prefer clear lakes….”. The Cornell Laboratory of Ornithology’s page dedicated to the common loon begins with: “The eerie calls of Common Loons echo across clear lakes of the northern wilderness”.

An association between loons and water clarity seems reasonable. After all, loons are visual predators. Why would they spend time in water through which they cannot see?

Yet I learned in Wisconsin in the mid 1990s that loons do not strongly favor clear water. While many of my study lakes, like Alva and Two Sisters, are quite clear and produce chicks regularly, many others, such as Hancock and Oneida, are both turbid and productive. In short, loons in the Upper Midwest thrive and fledge chicks on lakes that vary between 3 and 20 feet of visibility. Indeed a scientific analysis showed that water clarity is not among the factors that dictates use of a lake by loons.

If you think about it, you can understand why a migratory species like the common loon does not overspecialize on water of a certain clarity. As we know from Kevin Kenow’s work, loons fly hundreds of miles across largely unknown terrain and then must land on a waterbody somewhere. If they are in desperate need of a meal at such times — as we might presume — they had better not be too finicky about the menu and the eating conditions. Flexibility must be especially important among juveniles migrating south for the first time, who are crossing terrain that is entirely unfamiliar to them and must find food nevertheless. And, of course, migration begins or ends in the Gulf of Mexico or Atlantic, where both diet and water clarity are entirely different from that during the summer months.

Wait. I posted a blog in the spring detailing the importance of water clarity to loon foraging success and explaining how rainfall was washing material into lakes and reducing clarity to loons’ detriment. Am I now taking that back? No indeed! Water clarity IS important to loon families in July. At that time of year, loon chicks gain mass much faster if the water is clear, and their adult parents maintain body mass better when water is clear. But further analysis has revealed an additional factor that is not so straightforward. I learned just a few weeks ago that loon chicks and their parents actually show lower mass in July in lakes that have high long-term clarity. That’s right; loons have higher masses when short-term water clarity is high but lower masses when they are in normally-clear lakes!

Just to be very plain here, I am saying that short-term water clarity (during the month of capture) increases loon masses because they probably see their food more easily, but some factor related to long-term clarity (how clear the water is on average, over many years) actually makes it harder for loons to put on mass. How do we make sense of this brain-twister?

We can only speculate about the long-term water-clarity-related factor that hinders loons’ foraging. However, there is a prime suspect. Human recreation is strongly correlated with lake water clarity. In other words, people like to spend time boating, fishing, and swimming in clear lakes. During the time when loon parents are trying to stuff their chicks with food, we humans are out there complicating the process by frolicking about in their vicinity. It seems quite plausible that this burst of human activity causes loons to lose precious foraging time and perhaps also access to their favorite foraging spot, if humans are using it. So we can easily see how human activity might cost loons some food and thus reduce mass.

If I am correct that humans impair loon foraging in clear lakes, then we can count breeding on a clear lake as a mixed blessing for loons. Clear water makes food easy to see and catch, but it brings hordes of humans that loons and their young must avoid — which cancels out a good deal of this advantage. Now, if a loon pair were to breed on a lake that had clear water and was inaccessible to humans, they would have it made! Sadly, this seldom happens in our neck of the woods.

In addition to this cool but somewhat distressing news about loon biology, I have distressing and not at all cool news about the Loon Project. We have just lost our primary funding source and are therefore going to be a bit tight for 2023 and perhaps beyond. I am hoping to use a “rainy day fund” to make it through 2023 in Wisconsin. Continuation of the work in Minnesota, which we began only two years ago, is now very much in doubt. If you can consider a donation to help us fight through this lean period — so that we can continue to learn about loon biology in ways that might help preserve the Upper Midwest loon population — we would really appreciate it.

________________________________

Photo: The male of the Little Pine-Dream Island breeding pair spent a good deal of time off of the nest in late May of this year, because of black flies. He and his mate fought off the flies, incubated their eggs and fledged two chicks this year. Little Pine Lake, on the Whitefish Chain, is relatively clear, and the male’s purple and white bands are easy to make out.

Ensconced as I am in the endless summer of southern California, it is easy for me to forget what loons are facing. As we know from Kevin Kenow’s excellent work, about half of all adults have now left their breeding lakes in Minnesota and Wisconsin and are on their way southwards. Many of these birds are hanging out in the Great Lakes before making the long overland journey to Florida. Some adults remain faithfully with their chicks, hoping to stuff a few extra fish into them before abandoning them to their own devices.

Adults’ departure leaves only chicks on the breeding grounds. Thanks to the the work of our fall observation teams and Brian Hoover, who pulled the data together and wrote it up, we know that most juveniles leave their natal lakes in the fall but hang out nearby. They search diligently for large, food-rich lakes, especially favoring those that resemble their natal one in pH. Their strategy is clear. First, stuff your face with fish where they are abundant and similar to the ones you first learned to hunt. Next, wait until the last possible minute to build up your energy stores. Finally, bolt for Florida before the ice makes it impossible to take off.

The juveniles’ plan has a touching pragmatism to it. There is no subtlety. Birds of the year are not burdened with territorial responsibilities or pangs of parental guilt. They just wish to survive long enough to reach the wintering grounds. And, generally speaking, they do.

But a few get left behind. Thus it happened with the Lake Thompson juvenile this fall. A great strapping youngster when we caught him in late July at five weeks of age, he continued to grow and thrive in the 12 weeks since we last saw him. Ultimately, he had no more need of his parents and moved five miles west to Boom Lake in Rhinelander to fatten up for migration. There, however, he ran afoul of a reckless hunter. Linda and Kevin Grenzer caught him last night and quickly saw that his left wing was fractured. X-rays at REGI confirmed the break — caused by goose shot visible in the x-ray.

I cannot think what else to say.


Top photo by Linda Grenzer. X-ray by REGI staff.

We all love loons. So naturally we should take any step we can to help them. Right? In that light, artificial nesting platforms (ANPs), or loon rafts, would seem to be a no-brainer. Platforms make it easier for loon pairs to produce chicks.

ANPs fit neatly within the framework of loon conservation. Accepted enthusiastically by most loon pairs, they would seem to provide a perfect, low-cost solution to increase loon populations. They are easy to construct; a person with a modicum of carpentry experience can find plans online and build a platform in a day or less. So platforms provide a simple method by which a single loon enthusiast can improve the breeding success of a pair of loons for many years. Across the loon breeding range, platforms have become a panacea for bolstering reproductive success.

But are nesting platforms all that we need them to be? Now that loon populations appear to be in trouble in Wisconsin and perhaps even in Ontario — and now that some of the causes of declines are beginning to come into focus — maybe it is time for us to step back for a moment. Maybe we should ask whether platforms address the actual problems that loon populations face. To state it technically, can platforms mitigate the specific negative factors hurting loon populations and make populations viable in the long term?

We first need to recognize that platforms address a single, very narrow problem faced by loons. Loon pairs must sit on their eggs — in an exposed location — for 28 days. If a mammalian predator wanders by during that month, the nest is lost. Platforms solve this problem beautifully. They increase the rate of hatching by about 70%. But increasing of hatching success is all platforms do. Platforms put more small chicks in the water — a pleasing outcome for folks that deploy them — but they do nothing to help those chicks reach fledging age. They do not feed chicks; they do not protect chicks from predators. They do not boost adult loon survival. They have no effect on the rate of boat strikes or angling casualties or lead poisonings of adults and chicks. In short, if loon populations suffer declines owing to reduced hatching success, then nesting platforms are just what the doctor ordered. If declines are caused by anything else, then platforms would appear ill-suited to the task.

What do we know at this point about the status of loon breeding populations and factors that might threaten them? Precious little, I am afraid, especially if we are speaking of the entire species range. But we have begun to identify specific threats to loon populations in the Upper Midwest.

At present, the four most significant hazards to loons in northern Wisconsin appear to be: 1) larger populations of Simulium annulus, a black fly that targets incubating loons and causes massive abandonments of loon nests in May and early June, 2) decreased water clarity during the chick-rearing period, which increases chick mortality, 3) increased deaths of adult loons and chicks from ingestion of lead sinkers and jigs, and 4) a mysterious die-off of young adults in recent years that has caused the population of future breeders to plummet. Black fly numbers are highly dependent upon rainfall during the previous year, we have recently learned. More rain means more flies. Increased June and July rainfall also reduces water clarity during the month of July. Both increased black flies and decreased water clarity have become much more severe in the past few decades, probably as a consequence of increased rainfall from climate change. Lead poisoning is known to be a big problem for loons in New England; animal rehabbers in the Upper Midwest feel that lead poisoning has increased in frequency there in recent years. The severity of lead poisoning, of course, should depend upon how much angling occurs and the extent to which anglers switch out their lead tackle for alternatives that are not deadly to wildlife. Finally, we have measured a clear and sharp increase in young adult mortality in our study population in northern Wisconsin. We have no idea, at present, what its cause might be.

How well does the use of nesting platforms to boost hatching success of loons map onto the quadruple threat of increased black flies, decreased water clarity, lead poisoning, and spiking mortality of young adults? With respect to black flies, platforms might mitigate the problem somewhat. Platform-nesting loons suffer abandonments just as severely as do loons nesting at natural sites, but the increased hatching success of second nests on platforms offsets the hit to hatching success caused by black fly-induced abandonments of first nests. Platforms, of course, have no impact on the decreased growth rate and increased mortality of loon chicks owing to declining water clarity and the resultant difficulty of feeding chicks. Likewise, platforms cannot affect the incidence of lead poisoning in an area. And platforms cannot possibly save young adult loons from whatever has caused them to die at such an alarming rate in recent years.

On the whole, then, floating nest platforms do not appear to address effectively the threats faced by loon breeding populations (to the extent that Wisconsin represents loon populations generally).

While that quick analysis might seem reasonable, I have ignored one crucial fact about loon nesting habitat and platforms. Platforms often provide loons with an opportunity to breed in lakes or parts of lakes where they otherwise could not because of the absence or poor quality of nesting habitat. In other words, platforms actually create new nesting habitat. If the new nesting habitat that platforms make available contains enough food that parents can fledge the chicks they hatch there, platforms might provide “bonus chicks” that give the loon population a boost. *

Of course, platforms are so enticing to loons that they must be deployed thoughtfully. A platform placed on a very small lake might lure a pair of loons to use it but result in starvation of the chick(s) because of food limitation. Since a pair lured into such a tragic situation might otherwise have nested and reared chicks successfully elsewhere, such misuse of nesting platforms exacts a cost on the breeding success of the population. (Loon conservationists recognize the pitfalls of using nesting platforms thoughtlessly and only deploy them where they are likely to do more harm than good.)

While loon platforms seem effective at boosting loon populations in some respects but appear ineffective or even harmful in other respects, what conclusion can we reach? Lacking hard data, we can only speculate. However, it is probably safe to conclude that judicious use of nesting platforms in lakes or parts of lakes that lack good nesting habitat adds enough “bonus fledglings” to the population to make platforms an effective conservation tool. Indeed, with the list of threats to loon populations growing, we might soon face a situation where we are casting about for new loon habitats with plenty of food but nowhere to nest — so that we can rely upon platforms to place a good many more chicks in the water.


* Population ecologists will recognize a potential flaw in my reasoning. Even if platforms result in a huge increase in fledged chicks in a population, density-dependent mortality during winter or migration (e.g. owing to food shortage) might wipe out all of these extra individuals. In that case, platforms would not be an effective conservation tool. In fact, increased adult mortality from a variety of causes could produce population decline even in the event of huge “bonus” chick production via platforms.

Yesterday, I heard the cheerful, buzzy calls of Japanese White-eyes* flitting about in the trees in my backyard. They are handsome and engaging little birds, but they don’t belong in southern California. They never lived here before humans did. As recently as ten years ago, white-eyes were quite difficult to find in the area.

A few weeks ago my wife, son, daughter, and I visited my ailing mother in Houston. On our first morning there, we were awakened by the incessant cooing of White-winged Doves*. They too are a striking species. The flashy white stripes on their wings and tails set them apart from the more familiar and homely Mourning Doves. Even the ceaseless calling of White-wings is rather pleasant. Don’t trust me on this; the abundant murmurings of this species inspired Stevie Nicks to write an entire song about them. But White-winged Doves have not always lived in the Houston area. I remember scouring trees around the Galveston County Courthouse in vain for this species with my mentor, Fred Collins, on a Christmas bird count a half century ago.**

Of course, while new species colonize new regions; well-established residents also vanish. In the Upper Midwest, the Piping Plover, a cute little shorebird, has recently become severely threatened. Though I have never seen a Piping Plover in all my years in Wisconsin and Minnesota, I do have experience with a second threatened species, the Black Tern. These agile fliers flit about marshy areas, plucking insect larvae and small vertebrates from the water and vegetation. They are appealing birds — with jet-black bodies that contrast tastefully with greyish wings and tail. But it is a longshot to find them in the Upper Midwest nowadays. What seemed a healthy breeding colony fifteen years ago on Wind Pudding Lake in northern Wisconsin — where we have always had a breeding loon pair — has disappeared altogether. It has been so many years since I last saw Black Terns on Wind Pudding that I have stopped looking for them there.

In short, my years as a bird-watcher have taught me that populations of birds change dramatically over time. Some species magically appear in new places, and other species disappear. I suppose it is my first-hand experience with the dynamics of avian populations that infuses my current research on loon populations in Wisconsin and Minnesota with such urgency. This is why I sweat the black fly season in May and June, worry about boat strikes and lead poisoning, and am in a bit of a panic over the recent loss of water clarity in the region. I have now seen — as I had not in 1993 when my loon work began — that birds can disappear.


* Photos by Natthaphat Chotjuckdikul and Ted Bradford from eBird.

** In fact, the picture is a bit complicated in the case of this species. White-winged doves occurred commonly in the southwestern U.S. 100 years ago, but the population was devastated by the expansion of the citrus industry. However, in the past three decades, the species has begun to nest in citrus trees and has come roaring back.

The beginning of the tale is heart-rending. A gosling is orphaned before hatching. A loon pair fails to hatch chicks of their own and, seeking to fill the void, sits on eggs they find near their nest. When these two desperate parties converge into a single — if nontraditional — family, they produce a heart-warming story*.

To see two species coexist despite 90 million years of evolutionary time spent apart is surprising. To see them not merely tolerate each other but become thoroughly interdependent, as parent and offspring, is truly striking. Such an improbable scenario makes one hopeful. This story suggests that differences between groups — even vast ones such as between geese and loons — can be overcome.

On the other hand, the sight of a gosling nestled comfortably on a loon’s back is also strange. It is a reminder — like exploding black fly populations, loss of water clarity, devastating storms, and the sudden abundance of wake boats — that the loon’s world has changed.

*Thanks to photographer Brad Thompson, who shared his beautiful photo.

.

What if we had an early warning system in loons that could alert us to population decline, like the proverbial canary in a coalmine?

Male loons might serve as such an early warning system. That is, careful monitoring of the health of male loons might provide a good indication of the health of the loon population as a whole. How is this possible? Because the more we study the breeding ecology of loons, the more stark differences we find between the sexes. And — more to the point — male loons have some chinks in their armor that females do not.

Most fundamentally, males are 25% larger than females. Greater size places greater energetic demands on males. Males are living “closer to the edge” than females and might often fail to acquire enough food during the season to maintain good body condition. Thus, a decrease in the quality or quantity of food — which could set in motion a population decline — should strike males first and hardest. Indeed, as the graph below shows, the average mass of male loons has declined in northern Wisconsin over the past 30 years in a way that suggests they are having more time finding food now than they used to. (Note that females have not declined in mass during the same period.) The obvious conclusion: something in Wisconsin lakes has changed in the past three decades that has impaired males’ ability to feed themselves.

Average masses of male and female loons in northern Wisconsin, 1991 to 2021. Male mass has declined significantly during this period, while female mass is unchanged.

Long before I discovered that male masses were in decline, I had begun to worry about male loons. You see, male loons live shorter lives than females. This means that there are simply fewer adult males around. In fact, the majority of non-territorial adults (“floaters”) in the loon population are females. Since males are in short supply, the loss of an adult male breeder on a lake or territory sometimes leads to that territory becoming vacant. In fact, in 23 of 24 well-documented instances where an adult breeder’s death was associated with a territory vacancy, the dead breeder was a male. Vacant territories are, of course, a harbinger of overall population decline.

Sadly, recreational fishing does not help the situation. Possibly because males’ greater size makes them a bit more desperate to feed themselves, male loons are twice as likely as females to be hooked by anglers or become entangled in fishing line. This pattern is well-documented in New England loons, but the same scenario plays out in the Upper Midwest. Specifically, of 47 known fishing entanglements among our study animals, 33 involved males, and only 14 involved females. Angling mortality, then, exacerbates what is already a female-skewed sex ratio owing to early male senescence.

It is difficult to predict the future, but I think you can see why I am concerned. Male loons appear to be in trouble. We cannot say for certain whether mass loss by male loons will cease or continue. Furthermore, we have no evidence to date that the 4% net loss in mass by males since 1991 has negatively affected their survival. So it is too early to panic about these patterns. But it is also hard not to feel like a miner glancing anxiously at his lethargic canary.

He was the biggest, healthiest juvenile we caught in Minnesota last year. The Rush Lake-Northeast chick was so independent on July 16th, when we first attempted to catch the family, that we could not relocate him after capturing and banding his parents. We shrugged, returned the following night, and had better luck. At 2900 grams, “Copper-White”, as he became after banding, was 300 grams heavier than the second-heaviest chick we caught last summer and almost certainly a male.

Considering the risky environment inhabited by juvenile loons, it is a mistake, I have found, to become attached to them. So, with the exception of the “Miracle Chick” — a juvenile on Squash Lake in 2012 that lost his father at three weeks, watched his mother quickly re-pair with a new male, but still got enough food and attention to fledge — we have tried to avoid this practice. Still, Copper-White became lodged in my mind. I had great hopes for him. If any juvenile had a chance to fledge, migrate, and come back in a few years as an adult, it was Copper-White.

Large size and good body condition, it seems, are not enough to protect a loon in his first few months of life. Last Friday, the National Loon Center got a report of a loon hemmed in by ice on on Cross Lake. They raced out to check the bird, and Mike Pluimer snapped the photo above.

It was alarming enough to hear of a loon still on the breeding grounds in mid-December. By this time, loons from the Minnesota population should have arrived in Florida and begun adjusting to a saltwater diet. Our hearts sank a bit further to see the bird’s plight. Resting in a tiny pool of open water surrounded by encroaching ice, this juvenile was clearly in dire straits. Why had he failed to migrate south with others of his species? Something must have gone horribly wrong.

Following heroic efforts on the part of the Crosslake Fire Department, Copper-White was caught and transported to Wild and Free Rehab Center in Garrison. Terri and Richard, who live on Rush Lake and watched the chick grow from its earliest days, reported that the captured bird was strangely docile — another worrisome sign.

Arrow points out where Copper-White’s right wing was sheared off at the metacarpal bone by a boat propeller. (Photo courtesy of Wild and Free Rehab, Garrison, MN.)

It took little time for Katie, the vet at Wild and Free, to diagnose Copper-White’s problem. The end of the loon’s right wing had been sliced off some time ago by a boat propeller, rendering him incapable of flight. Unlike many hawks and owls, loons’ size and need for open water make them impossible to keep alive in captivity. The only option was to euthanize this bird.

Alas, I have no cheerful anecdote to cushion the blow. We are disheartened to lose a healthy, strapping juvenile loon to a boat strike. But boat strikes that injure loons are a fact of life in the Upper Midwest. We lost a healthy adult male even more tragically two years ago in Wisconsin. The only comfort here is that boat strikes occur infrequently enough in the Upper Midwest that they do not contribute meaningfully to loon mortality. At the moment, that is cold comfort.