Tags

,

A few months ago I wrote a post about the impact of black flies on nesting of loons. Some might recall that, after abandoning their first nesting attempt, pairs sometimes reuse the nest, leaving the two original eggs in place. This situation produces supernumerary eggs: two addled ones, two still alive. Despite some odd-looking clutches, though, the impact on reproduction seems minimal. That is, the presence of extra eggs in a new nest does not appear to impair incubation of live eggs. Chicks still hatch normally.

In fact, I had all but forgotten about black flies by the time it came to the loon capture season this year. You see, capture is an inherently cheery process. First of all, capture is only possible on lakes with chicks, so we only visit such lakes. Second we work at night and become so absorbed in the demands of creeping up on protective adults and their awkward, fuzzy offspring that the travails of the population at large do not enter our sleep-deprived brains. Between the adrenaline rush following a challenging capture and the warmth of feeling that accompanies the release of parents and their adorable young, nothing else matters.

One issue nagged me even during capture this year though. The great majority of chick broods were singleton chicks (like the one on Muskellunge Lake in Linda’s photo). So few two-chick broods did we encounter that each one seemed an oddity — an almost inconceivable reproductive bounty. 2017 was a surprise, because, based on many previous years of capture, I had come to expect roughly equal numbers of two-chick and one-chick broods.

In the days following my nocturnal boating adventures, I mulled over the abundance of singletons in 2017. It was then when black flies entered my mind. Was it possible that black flies had disrupted incubation to such a degree that many pairs had lost one of their two embryos early and hatched only one chick? This might happen if fly-bitten pairs spent enough time off of their nests that one, but not both, of their eggs became inviable. If so, years with many nest abandonments owing to black flies should also be those with many singleton chicks. In fact, this is the case, as the figure below shows.

Screen Shot 2017-08-05 at 6.34.05 PM

Thus, it seems that black flies inflict a double whammy: they cause widespread abandonment of nests, and nests not abandoned suffer from reduced hatching rate. To make matters worse, cold spring weather, which prolongs the lives of black flies, also causes hypothermia of loon embryos, endangering their survival.

Now I have somewhat simplified the factors that cause singleton chicks in loons. I certainly have to explore additional factors, looking, for example, to see if loons are more prone to laying one-egg clutches during severe black fly outbreaks (although a quick check of the data revealed no such pattern). But it seems that we have yet one more reason to hope for rapid and sustained spring warmup in the Northwoods.